

INSTITUTE OF NON-FERROUS METALS

Analytical Chemistry Department 44-101 Gliwice, ul. Sowińskiego 5 CERTIFICATE OF ANALYSIS Copper of high purity

The average results of chemical analysis in ppm

No. Element	CS6	CS7
Ag	8,5	13,7
As	0,20	0,9
Bi	<0,5	<0,5
Cd	(0,06)	(0,02)
Fe	20,8	4,9
Ni	0,8	4,4
Pb	(0,4)	0,9
Sb	1,0	1,0
Se	<1,0	<1,0
Sn	10,6	0,5
Te	<0,05	<0,05
Zn	1,4	-
Co	(0,20)	0,09
В	<0,5	<0,5
Mn	0,7	2,2
S	5,4	7,0
Cr	0,2	19,7
Р	(1,5)	(2,4)
Si	-	<1,0

Director of the Institute

Prof. Ph.D. Zbigniew Śmieszek

The uncertainity in ppm at the probability level of 0,05

No. Element	CS6	CS7
Ag	0,5	0,4
As	0,07	0,1
Bi	ı	-
Cd	1	-
Fe	1,5	0,2
Ni	0,4	0,4
Pb	-	0,4
Sb	0,3	0,2
Se	1	-
Sn	0,3	0,2
Te	-	-
Zn	0,4	-
Со	-	0,03
В	1	-
Mn	0,07	0,1
S Cr	0,7	0,8
	0,1	1,4
Р	-	-
Si	-	-

Analytical methods applied:

- Ag atomic emission spectrometry with ICP and low voltage spark, atomic absorption spectrometry directly on the background of matrix
- As atomic emission spectrometry with ICP and atomic absorption spectrometry after co-precipitation on Fe (041), (p44)
- Bi atomic absorption spectrometry after co-precipitation on Fe (0H), (pH4)
- Cd atomic emission spectrometry with ICP and atomic absorption spectrometry directly on the background of matrix
- Fe atomic emission spectrometry with ICP and low voltage spark, atomic absorption spectrometry after co-precipitation on La (04), (p49)
- Ni atomic emission spectrometry with ICP and low voltage spark, spectrophotometric with dimethylgliyoxime after electrolytic copper separation and extraction of Ni with chloroform
- Pb atomic absorption spectrometry after co-precipitation on Fe (04) (p49)
- atomic emission spectrometry with ICP and atomic absorption spectrometry after co-precipitation on Fe (0H); (pH4)
- Se atomic emission spectrometry with ICP and atomic absorption spectrometry after co-precipitation on Fe (041); (p44)

- Sn atomic emission spectrometry with ICP and low voltage spark, spectrophotometric with phenylophluoran after separation on MnO_Z
- Te atomic absorption spectrometry after co-precipitation on Fe (0H); (pH4)
- Zn atomic emission spectrometry with ICP and low voltage spark, atomic absorption spectrometry after electrolytic copper separation
- Co atomic emission spectrometry with ICP, atomic absorption spectrometry directly or after electrolytic copper separation
- B atomic emission spectrometry with ICP
- Mn atomic emission spectrometry with ICP and low voltage spark, atomic absorption spectrometry directly on the background of matrix
- s atomic emission spectrometry with ICP and low voltage spark, method of combusting and infrared determination of 50_Z
- Cr atomic emission spectrometry with ICP and low voltage spark, atomic absorption spectrometry directly on the background of matrix
- P atomic emission spectrometry with ICP and spectrophotometric with blue-phosphoromolibdenate after extraction
- Si spectrophotometric with amyl-alcohol

The chemical analysis have been carried out in four specialistic industrial laboratories from Poland and in two laboratories of the Institute of Non-Ferrous Metals using when possible three different methods. Melts have been performed using vacuum furnace.

Copper CRMs after extrusion have a form of discs 40 mm in diameter and Z5 mm in height or 6 mm in diameter and 100 mm long (CRMs CS6 only in form of discs). Homogeneity investigations were made taking into account 30% of the material produced. Investigations were carried out using the atomic emission spectrometry method with low voltage spark. Homogeneity was estimated statistically with application of the test F. Application of CRMs – Atomic emission spectrometry. CRMs are stable in time.